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SHEAR WAVES IN HARDENING RIGIDLY PLASTIC BODIES* 

B. A. DRUIANOV 

The dynamic flow of a hardening rigidly plastic medium with a flow law related to 
the Mises or Tresca yield condition is considered. The Odqvist parameter is taken 

as the hardening parameter (the Odqvist parameter is related to the specificplastic 

work ID in the Mises theory by the dependence dw= kdX3 where k is the shear yield 

limit). It is shown that in an arbitrary continuous medium the surface of weak 

velocity discontinuity (S) at each point should be tangent to the principal direc- 

tion of the strain rate tensor, if the principal directions of this tensor are 
continuous. The flow law imposes new constraints on ,S. Thus, weak velocity dis- 
continuities can only be on the maximal shear surface in the Mises theory. 

As an illustration, the problem of plastic deformation propagation in a half- 

plane is considered when the velocity is given on an edge, where the solution shows 

that weak discontinuities can be caused by the boundary conditions. It turns out 

also that a continuous solution or one containing only weak velocity discontinuit- 
ies is not always possible. In this connection, the problem of the structure of a 

strong velocity discontinuity (shock) is solved with viscosity taken into account. 

Existence conditions for the shock, and an equation governing its propagation veloc- 

ity are obtained. The results obtained are applied to the problem of strain propa- 

gation in rigidly plastic bodies. 

Among the large quantity of papers on the wave theory of plastic media, we 

note /l-33/ as being closest to the theme of the present paper. 

1. Kinematic conditions on surfaces of weak velocity discontinuity (S). 
We show that independently of its properties, a surface Sin a continuous medium should 

be tangent to one of the principal directions of the tensor Eij if the velocity field (ui) 

and the principal directions of Eij are continuous on s. 

Let D, and D, denote domains belonging to S. Let the velocity field C, and the tensor 

Eij be known in some neighborhood of S at the time under consideration. We consider an 

arbitrary point Min S, at which the principal directions of the tensor E,j are uniquely 

defined. In the neighborhood of the point Min D, and D,we introduce a coordinate system 

qi whose coordinate lines agree with the trajectories of the principal strain rates. 

We write the strain rate tensor components in the form (Hiare Lame/ parameters) 

(hi = In Hi, 8 I asi = Hi-l d I i%q,) 

The relationship yij = 0 is satisfied on both sides of S in the coordinate system ni. 
The coordinate system nli can always be selected so that Vi = 0 at the point M. Then the 

relationships 

[%]+[$]=o, [+]+[z]=o> [Zj+[%]=o (1.2) 

should be satisfied at the point :1/1. Here [3vi / dsj] is the jump in avi I asj on S. Setting 

avi /&j = pin], where pi = avi /an is the jump in the derivative along the normal to the 

surface of discontinuity, and nj are direction cosines of the normal, we obtain a system of 

equations in pi 
Pl% + p2n1 = 0, pzkl + Y& = 0, p1n, + p3’21 = 0 (1.3) 

There will be nonzero solutions under the condition n1rz2n3 = U. Therefore, one of the princi- 

pal directions of Eij is tangent to S. 

2. Discontinuities in Mises theory. Henceforth, only surfaces of weak velocity 

discontinuity S or, equivalently, the surface of strain rate tensor discontinuity, on which 

the principal directions of the stress tensor are continuous, and therefore, the principal 
directions of the tensor Eij are continuous Such a constraint is justified by the concep- 

tion of surfaces of stress discontinuity as degenerate rigid zones taken in quasistatics in 

the theory of plasticity, whereupon the tensor ai] cannot undergo a discontinuity thereon. 
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The flow law can impose additional constraints on the surface 
S. 

Let (Ji be the principal stress, where 01 >, 02 > 03. We 

introduce the curvilinear coordinates Ei. The direction of E, 

at each point is compatible with the direction of 02, and the 

directions El, & are compatible with the directions of the areas 

of the extremal tangential stress (Fig.1). If (J1 = (5*, then any 
direction orthogonal to css can be taken as E,. We proceed analog- 

ously in the case o2 = IJ~. The coordinate system Ei can be intro- 

duced in the neighborhood of any nonsingular point of the stress 
tensor. 

Let Sij be the stress tensor-deviator. We have .s11 = sa3 = 
'I, .sz2 = ( p - I&) 13, s1.2 = s*3 = 0, s13 = T. 

Fig.1 
The flow law yields (li is the shear yield point) 

ei j = (X' / Z/C) Si j (2.1) 

Therefore, El1 = E33 = - '/z s22, VIZ = y23 = 0. From this and from (1.1) we obtain the 
relationship on the surface of the weak velocity discontinuity S. (We shall now understand 

aI8Si to be the differentiation operator in the direction ti ). Reasoning exactly as in 

Sect.1, we arrive at the deduction that the surface S should be tangent at each of its points 

to one of the extremal shear areas. We call such surfaces shear surfaces. 

Let us assume that the plasticity condition is satisfied on both sides of the surface 

of discontinuity. It is clear from the above that discontinuities of Eij are possible only 

on shear surfaces. Let us superpose the surface _ E, = const on the surface of discontinuity 

while temporarily not assuming that o1 > IS,> oz. The plasticity condition has the form 
(q - lJ2)2 + 39 = 3k2. Since [-cl = [ql = 0, then [cr,l = 0 also. Since L&111 = 1~~~1 = 0, then 
o?= 4 = '1, (al+ (JQ) from (2.1). Therefore [C-J ~~ 0. 

Therefore, if E, conrt is a surface of discontinuity of cij , then a,> oz> oz. 

Therefore, the surface of discontinuity of Eij can only be a maximal shear surface. 

Now, let ol> (r?> 0,. Then 7 =X,, ~~~~ = y (y is the maximal shear velocity). From (2.1) 
we obtain [y] = ["/.'I. 

The hardening condition in the coordinates gi takes the form 

x’ = I I’ I (2.2) 

Hence, the condition [v] mu Ix’1 also follows, which we rewrite in the form(G is the 
normal velocity of the surface of discontinuity) 

(Vg - C) LdX i i&l - [yl = 0 (2.3) 

3. Dynamic compatibility conditions. Let us evaluate the acceleration jump on 

the surface of weak velocity discontinuity S by superposing it on the surface E, = const. We 

consider the coordinate system Ei as proper for a certain point IlIof the surface S. The 
acceleration of the point Nwill be a = dv ldt = Ov /iit. Hence [a,] = - G I&, / i&] (ai is the 
projection of the acceleration in the direction E;) . It follows from (1.1) that for an 
arbitrary point of the surface S 

ia11 = (L.:S - G) [y~nl, la,1 L= (I+ - G) ly,,l, la,1 : [u, - 

As has been shown earlier, in Mises theory [v~~] = [y], [YJ :- 0, 

Ia111 = (('3 - C) [VI, [n,l z 0, [a,1 =: 0 

Let uij be the physical components of the stress tensor in the 

have 011 ~~ (Tpz : C,, (T12 Im 823 ~ 0, 813 : T. The equations of motion are 

G) l%,l (3.1) 

[E~~] -= 0 so that 

(3.2) 

coordinates Ei. We 

written in the form 

Let ei be the directions of the coordinate system si. According to the derivation form- 
ulas 

Since (34 I dsl =: de2 I ds, ~~ 0 on S, then & / as3 = ah, / ds, = 0. 
From (3.3), the dynamical compatibility conditions on the maximum shear surface are 

[~]-rnrl~=o(U3- G)[y], [%] + [(a-q)+x+h3)] =o 7 [$] +2t [$+[‘2] $f’ (3-4) 
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As is shown above (Sect.2), [czl = 0 in Mises theory. Moreover, 3% I as, = x (x)8x I i)s, 
where x = dk/dX is the plastic modulus. Equations (3.4) become 

if [s] -~@a--G)IYI=~> [$I =O, I$-] +2t [3 =O (3.5) 

There results from (2.3) and the first equation in (3.5) that the velocity of shear wave 

propagation equals (v,is the normal particle velocity on the shear surface) 

G-vii, - I/X/[' (3.6) 

4. Tresca condition. Let us first examine the case cl, ' 02 > 08. The flow condition 
inthe coordinates ii is written in the form r = k. According to the associated flow law 
Eij = 0, moreover, E*z = ‘izy. There are therefore five kinematic equations that yield five 
relationships on the weak velocity discontinuity surface. Investigating them results in the 
deduction that the discontinuity in Fij is possible only on maximal shear surfaces 5, = consk 
or E1 = const. 

Let us consider discontinuities on the surface &, = const. It follows from the first equa- 
tions of (3.3) and (2.3) that if [uJ = 0, then [r]#O under the condition (3.6). If ~o,l#O 
because of the boundary conditions, then lyl#=O for p (ua - G)*#x. 

Now, let o1 = uz> c3 (the case cl> c2 = o3 is considered analogously). In this case, 

the flow law imposes no new conditions on the weak discontinuity surface S as compared with 

Sect.1. Because of the condition 01 = fsa there is a principal direction of the tensor 011 
tangent to an arbitrary surface at any point of this surface. Since the tensors oij and @zj 
are coaxial, the selection of S is not constrained in any way. 

Let us introduce the curvilinear coordinates a, B,v, where we direct the v axis along 

the normal to S. and the p axis along the principal direction tangent to S. The plasticity 

conditions are written in the form 

f1 = (cr - 0,)' f 4T;v - 4k= = 0, f2 -= ov -+ csa - 29--2k = 0 (4.1) 

It is hence seen that lo,] = [ogl = 0. 

According to the associated flow law 

Ev = 2p1 (0~ - urr) + Pz, EC2 = 2p1 (ua - uv) + FL:, ‘fi =- - 2p2. E~v = 4 ~l%v (4.2) 

Since [Ed] = 0, then [p21 = 0. Since LE,] = 0, then IpI1 (6~ - uy) = 0. Hence, discontinuit- 

ies of Eij are possible only for ca = uV. There results from (4.1) that ~~~ = I;, i.e., S is 

a maximum shear surface. 

Since 01 = (Jz, it follows [a,] = 0, and as is seen from (3.4) and (2.3) a discontinuity 

in y is possible only under the condition (3.6). 

Fig.2 Fig.3 

Let us note that in the case under consideration, as in the previous cases, the strain 

rate normal to Sis continuous on S. It follows from (3.1) that the acceleration component 

normal to Sis continuous on S. 
The results obtained are evidently extended to convex and piecewise-linear plasticity 

conditions of general form. 

5. Propagation of strain in rigidly plastic bodies. The appearance of a 

different kind of discontinuity is possible-on rigidly plastic boundaries (T). Let us first 

note that by applying the reasoning of Sect.1 to T, we arrive at the deduction that the 

surface T should be tangent to at least one principal direction of the tensor et) at each point 

/4/. It can also be shown that all the constraints resulting from the flow law and obtained 
in Sect.2 and 4 /4/ are carried over to T. However, the question of the propagation velocity 

of rigidly plastic boundaries in the case when there is a jump in 1' on them depends on whether 

the material is or is not in a neigborhood of T lying in the rigid zone, at the yield point. 
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For quasistatic flows it is customary to consider the material to be 

/5/ in the rigid domain adjoining T. 
If such a representation is taken, then all the deductions about the 

of a weak velocity discontinuity surface, that were obtained above, carry 

at the yield point 

propagation velocity 

over to the rigidly 

plastic boundaries. However, it is evidently false to consider the material in the neigbor- 

hood of the rigidly plastic boundary in the rigid domain as being at the yield point in 

dynamic flows in all cases. 

In conclusion, we consider plane shear wave propagation in an initially homogeneous half- 

plane ~20 (Fig.2). Let the edge of the half-plane be clamped rigidly to a nondeformable 

edging, whose velocity is given. Let u(t,y) denote a unique velocity projection different 

from zero on the Ox axis. We then have the boundary condition u (t, 0) = 0 for t < 0, u (6 0) = u. (t), 

~(0) = 0 for t>O. We moreover assume that 11 (0, Y) = x (0, Y) = 0. 

The equations of motion and the hardening condition are written in the form 

atrY au ax au 
aY Pata dt =- II -67 (5.1) 

Since ~~~~ -k(x), there should be au/ay<O. 

Equations (5.1) take the form 

$++$0, ++0 

This is a hyperbolic system. The equations of the characteristics are 

(5.2) 

x 

dy = + v.7~ dt, 
-- 

u -5 u (x) y const ( U(x)-; [Vxlpdx 
i 

(the plus sign is for the first family, and the minus is for the second). 

The rigid domain is separated from the deformable rectilinear first-family characteristic 

in the ty plane. Since U= x= U= 0 in the rigid domain then the integral u = u(x) holds 

in the flow domain. 

The first family characteristics are lines along which u = const and x = const. We find 

from u (t,y) = U(x) and (5.2) 

au I ay = - V/P I x.au I at and au I ay I&,+ = ~/P/xu~’ (t) 

It is hence seen that the strain is propagated from the boundary as long as the edging 

is accelerating. For %' < 0, a rigid zone starts to be propagated from the boundary into 

the half-plane depths, and the deformable domain in the form of a wave packet continues to be 
propagated into the depth of the half-plane (Fig.2). 

Since the deformable domain is separated from the rigid domains by first-family character- 

istics, the rigidly plastic boundaries are propagated at the velocity JfxIp. The appearance 
of a discontinuity y Y au I ay on them depends on the boundary condition u,(l). If u'o (0) # 0, 
a jump y occurs at the leading front of the wave T,. Analogously, the jump in y can also 

occur on the trailing front of the wave T,. 

Let us note that if the hardening curve is convex downward, x' (x) = k” (xi ; 0, an envelope 
of the first-family characteristics exists in the upper half-plan ty , and therefore, the 
continuous solution constructed does not hold. In this case a shock, a line of strong veloc- 

ity discontinuity, appears. 

6. Structure of a strong velocity shock. It was shown in /4,6/ that a strong 
velocity discontinuity can be obtained for x _ const as the limit of a layer of finite thick- 
ness h when y-00 as h- 0. This method is not suitable for x # const. In this connection, 

we examine the steady flow of a viscous rigidly platic medium in an infinite plane under pure 

shear. 
Let the velocity projections on the axes Z, y be u = u (y), u = coast. Then ox = crV = const,rzy = 

t (Y). The equation of motion, the hardening condition, and the flow law are written in the 

ds du dx du 
dye Vdy’ vdy-dy. 1 y k (x) + s (4 

(s(d), the viscous stress, is a given function of u', U' = du / dy, and s (0) = 0,s' (u') > 0). We have 
the following boundary conditions: u = U’ =x = 0 for y - - 00 and u = ul. IL' = 0, x .:= x1 as g-m. 

We find 
T = pou + I;,, U = cx (6.2) 

from the first two equations and the boundary condition as y--m. Substituting (6.2) in 
the last equation of (6.1), we obtain 

s (u') = 0 1‘1, - k (11 / 1.) + k, = z (u) (6.3) 
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Since s(IL')>~, it follows z>O. Taking into account that :(U)= 0. we require that rlz i dri > 0 

for u == 0. We obtain p? - x(O)> 0, or f'> 1/x (0) i p. 
The boundary condition as u+m requires that :(ul)= 0. This requirement results in 

an equation governing I', the wave propagation velocity 
i; (11, i’, - I<” - p ml 

The mutual location of the lines 

Fig.4 I," (xi > (1 when 1, (%) is convex downward. 
Let us also note that in this latter case riz!rir~ vanishes at the point 1, 11~ determined 

from the equation r.(u / z) = prL, where I* (_ ((1. 11,) 
Let f(z) be a function inverse to 

It is hence seen that y-r--00 as 

shown in Fig.4. 

It is interesting to note that the 

material is or is not outside the shock 

s (Ll’) . Then we find a dependence of‘!, on IL from (6.3) 

(6.4) 

11 -rO and l/*-t" as II+Iil. The dependence II (11) is 

results of Sect.6 are independent of whether the 

at the yield point. 
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